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Chapter 20
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The resonant switch concept

A quite general idea:
1. PWM switch network is replaced by a resonant switch network

2. This leads to a quasi-resonant version of the original PWM converter

Example: realization of the switch cell in the buck converter
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Two quasi-resonant switch cells
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Insert either of the above switch
cells into the buck converter, to
obtain a ZCS quasi-resonant
version of the buck converter. Lr
and Cr are small in value, and
their resonant frequency f0 is
greater than the switching
frequency fs.

f0 = 1
2π LrCr

=
ω0

2π
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20.1  The zero-current-switching
quasi-resonant switch cell
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Tank inductor Lr in series with transistor:
transistor switches at zero crossings of inductor
current waveform

Tank capacitor Cr in parallel with diode D2 : diode
switches at zero crossings of capacitor voltage
waveform

Two-quadrant switch is required:

Half-wave:  Q1 and D1 in series, transistor
turns off at first zero crossing of current
waveform

Full-wave:  Q1 and D1 in parallel, transistor
turns off at second zero crossing of current
waveform

Performances of half-wave and full-wave cells
differ significantly.
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Averaged switch modeling of ZCS cells

It is assumed that the converter filter elements are large, such that their
switching ripples are small. Hence, we can make the small ripple
approximation as usual, for these elements:

i2(t) ≈ i2(t) Ts

v1(t) ≈ v1(t) Ts

In steady state, we can further approximate these quantities by their dc
values:

i2(t) ≈ I2

v1(t) ≈ V1

Modeling objective: find the average values of the terminal waveforms

〈 v2(t) 〉Ts
  and 〈 i1(t) 〉Ts
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The switch conversion ratio µ
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i2(t) ≈ i2(t) Ts

v1(t) ≈ v1(t) Ts

i2(t) ≈ I2

v1(t) ≈ V1

µ =
v2(t) Ts

v1r(t) Ts

=
i1(t) Ts

i2r(t) Ts

µ =
V2

V1

=
I1

I2

In steady state:

A generalization of the duty cycle
d(t)

The switch conversion ratio µ is
the ratio of the average terminal
voltages of the switch network. It
can be applied to non-PWM switch
networks. For the CCM PWM
case, µ = d.

If V/Vg = M(d) for a PWM CCM
converter, then V/Vg = M(µ) for the
same converter with a switch
network having conversion ratio µ.

Generalized switch averaging, and
µ, are defined and discussed in
Section 10.3.
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20.1.1   Waveforms of the half-wave ZCS
quasi-resonant switch cell
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〈 i2(t)〉Ts

The half-wave ZCS quasi-resonant switch
cell, driven by the terminal quantities
〈 v1(t)〉 Ts and 〈 i2(t)〉 Ts.
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α

I2

v2(t)
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Q1

D2

D1

Q1

D1

D2X

Waveforms:

Each switching period contains four
subintervals
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Subinterval 1

+
–

+

v2(t)

–

i1(t)

V1

Lr

I2

Diode D2 is initially conducting the filter
inductor current I2. Transistor Q1 turns on,
and the tank inductor current i1 starts to
increase. So all semiconductor devices
conduct during this subinterval, and the
circuit reduces to:

Circuit equations:
di1(t)

dt
=

V1

Lr

i1(t) =
V1

Lr
t = ω0t

V1

R0

with i1(0) = 0

Solution:

where R0 =
Lr

Cr

This subinterval ends when diode D2

becomes reverse-biased. This occurs
at time ω0t = α, when i1(t) = I2.

α =
I2R0

V1

i1(α) = α V1

R0
= I2
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Subinterval 2

Diode D2 is off. Transistor Q1 conducts, and
the tank inductor and tank capacitor ring
sinusoidally. The circuit reduces to:

+
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+

v2(t)

–

i1(t)

V1

Lr

I2Cr

ic(t)

The circuit equations are

Lr

di1(ω0t)
dt

= V1 – v2(ω0t)

Cr

dv2(ω0t)
dt

= i1(ω0t) – I2

v2(α) = 0
i1(α) = I2

The solution is

i1(ω0t) = I2 +
V1

R0
sin ω0t – α

v2(ω0t) = V1 1 – cos ω0t – α

The dc components of these
waveforms are the dc
solution of the circuit, while
the sinusoidal components
have magnitudes that depend
on the initial conditions and
on the characteristic
impedance R0.
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Subinterval 2
continued

i1(ω0t) = I2 +
V1

R0
sin ω0t – α

v2(ω0t) = V1 1 – cos ω0t – α

Peak inductor current:

I1pk = I2 +
V1

R0

This subinterval ends at the first zero
crossing of i1(t). Define β = angular length of
subinterval 2. Then

i1(α + β) = I2 +
V1

R0
sin β = 0

sin β = –
I2R0

V1

V1

Lr

θ = ω0t

i1(t)

I2

Subinterval: 1 2 3 4

α

ω0Ts

ξδβ

Must use care to select the correct
branch of the arcsine function. Note
(from the i1(t) waveform) that β > π.

Hence

β = π + sin– 1 I2R0

V1

– π
2

< sin– 1 x ≤ π
2

I2 <
V1

R0
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Boundary of zero current switching

I2 <
V1

R0

If the requirement

is violated, then the inductor current never reaches zero. In
consequence, the transistor cannot switch off at zero current.

The resonant switch operates with zero current switching only for load
currents less than the above value. The characteristic impedance
must be sufficiently small, so that the ringing component of the current
is greater than the dc load current.

Capacitor voltage at the end of subinterval 2 is

v2(α + β) = Vc1 = V1 1 + 1 –
I2R0

V1

2



Fundamentals of Power Electronics 12 Chapter 20:  Quasi-Resonant Converters

Subinterval 3

All semiconductor devices are off. The
circuit reduces to:

The circuit equations are

The solution is

+

v2(t)

–

I2Cr

Cr

dv2(ω0t)
dt

= – I2

v2(α + β) = Vc1

v2(ω0t) = Vc1 – I2R0 ω0t – α – β

Subinterval 3 ends when the
tank capacitor voltage
reaches zero, and diode D2

becomes forward-biased.
Define δ = angular length of
subinterval 3. Then

v2(α + β + δ) = Vc1 – I2R0δ = 0

δ =
Vc1

I2R0

=
V1

I2R0

1 – 1 –
I2R0

V1

2
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Subinterval 4

Subinterval 4, of angular length ξ, is identical to the diode conduction
interval of the conventional PWM switch network.

Diode D2 conducts the filter inductor current I2

The tank capacitor voltage v2(t) is equal to zero.

Transistor Q1 is off, and the input current i1(t) is equal to zero.

The length of subinterval 4 can be used as a control variable.
Increasing the length of this interval reduces the average output
voltage.
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Maximum switching frequency

The length of the fourth subinterval cannot be negative, and the
switching period must be at least long enough for the tank current and
voltage to return to zero by the end of the switching period.

The angular length of the switching period is

ω0Ts = α + β + δ + ξ =
2π f0

fs
= 2π

F

where the normalized switching frequency F is defined as

F =
fs
f0

So the minimum switching period is
ω0Ts ≥ α + β + δ

Substitute previous solutions for subinterval lengths:

2π
F

≥ I2R0

V1
+ π + sin– 1 I2R0

V1
+

V1

I2R0

1 – 1 –
I2R0

V1

2



Fundamentals of Power Electronics 15 Chapter 20:  Quasi-Resonant Converters

20.1.2  The average terminal waveforms
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Averaged switch modeling:
we need to determine the
average values of i1(t) and
v2(t). The average switch
input current is given by

α + β
ω0

α
ω0

i1(t)

I2 〈 i1(t)〉Ts

t

q2
q1

i1(t) Ts
= 1

Ts
i1(t)dt

t

t + Ts

=
q1 + q2

Ts

q1 and q2 are the areas under
the current waveform during
subintervals 1 and 2. q1 is given
by the triangle area formula:

q1 = i1(t)dt
0

α
ω0

= 1
2

α
ω0

I2



Fundamentals of Power Electronics 16 Chapter 20:  Quasi-Resonant Converters

Charge arguments: computation of q2

α + β
ω0

α
ω0

i1(t)

I2 〈 i1(t)〉Ts

t

q2
q1

q2 = i1(t)dt
α

ω0

α + β
ω0

+
–

+

v2(t)

–

i1(t)

V1

Lr

I2Cr

ic(t)

Circuit during subinterval 2

Node equation for subinterval 2:

i1(t) = iC(t) + I2

Substitute:

q2 = iC(t)dt
α

ω0

α + β
ω0

+ I2dt
α

ω0

α + β
ω0

Second term is integral of constant I2:

I2dt
α

ω0

α + β
ω0

= I2

β
ω0
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Charge arguments
continued

q2 = iC(t)dt
α

ω0

α + β
ω0

+ I2dt
α

ω0

α + β
ω0

First term: integral of the capacitor
current over subinterval 2. This can be
related to the change in capacitor
voltage :

iC(t)dt
α

ω0

α + β
ω0

= C v2

α + β
ω0

– v2
α
ω0

–
I2

Cr

α

v2(t)

ξδβ

Vc1

iC(t)dt
α

ω0

α + β
ω0

= C Vc1 – 0 = CVc1

Substitute results for the two
integrals:

q2 = CVc1 + I2

β
ω0

Substitute into expression for
average switch input current:

i1(t) Ts
=

αI2

2ω0Ts
+

CVc1

Ts
+

βI2

ω0Ts
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Switch conversion ratio µ

µ =
i1(t) Ts

I2
= α

2ω0Ts
+

CVc1

I2Ts
+

β
ω0Ts

Eliminate α, β, Vc1 using previous results:

µ = F 1
2π

1
2 Js + π + sin– 1(Js) + 1

Js
1 + 1 – J s

2

where

Js =
I2R0

V1
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Analysis result: switch conversion ratio µ

Js =
I2R0

V1

µ = F 1
2π

1
2 Js + π + sin– 1(Js) + 1

Js
1 + 1 – J s

2
Switch conversion ratio:

with

This is of the form

µ = FP1
2

Js

P1
2

Js = 1
2π

1
2 Js + π + sin– 1(Js) + 1

Js
1 + 1 – J s

2
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Characteristics of the half-wave ZCS resonant switch
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Buck converter containing half-wave ZCS quasi-resonant switch

M = V
Vg

= µ

Conversion ratio of the buck converter is (from inductor volt-second balance):

For the buck converter,

Js =
IR0

Vg

ZCS occurs when

I ≤
Vg

R0

0 ≤ V ≤ Vg –
FIR0

4π

Output voltage varies over the
range
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Boost converter example
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=
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Half-wave ZCS equations:

µ = FP1
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2π
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Js
1 + 1 – J s
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20.1.3  The full-wave ZCS quasi-resonant switch cell
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Analysis: full-wave ZCS

Analysis in the full-wave case is nearly the same as in the half-wave
case. The second subinterval ends at the second zero crossing of the
tank inductor current waveform. The following quantities differ:

β =
π + sin– 1 Js (half wave)

2π – sin– 1 Js (full wave)

Vc1 =
V1 1 + 1 – J s

2 (half wave)

V1 1 – 1 – J s
2 (full wave)

In either case, µ is given by

µ =
i1(t) Ts

I2
= α

2ω0Ts
+

CVc1

I2Ts
+

β
ω0Ts
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Full-wave cell: switch conversion ratio µ

P1 Js = 1
2π

1
2 Js + 2π – sin– 1(Js) + 1

Js
1 – 1 – J s

2

µ = FP1 Js

Full-wave case: P1 can be
approximated as

P1 Js ≈ 1

µ ≈ F =
fs
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20.2  Resonant switch topologies

Basic ZCS switch cell:
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ZCS quasi-resonant switch cell

Switch network

+

v1r(t)

–

i2r(t)

D2

SW

SPST switch SW:

• Voltage-bidirectional two-quadrant switch for half-wave cell

• Current-bidirectional two-quadrant switch for full-wave cell

Connection of resonant elements:

Can be connected in other ways that preserve high-frequency
components of tank waveforms
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Connection of tank capacitor

+
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i1(t) i2(t)
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ZCS quasi-resonant switch

D2

SW
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ZCS quasi-resonant switch

D2

SW

+
–

L

C R

+

V

–

Connection of tank
capacitor to two
other points at ac
ground.

This simply
changes the dc
component of tank
capacitor voltage.

The ac high-
frequency
components of the
tank waveforms
are unchanged.
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A test to determine the topology
of a resonant switch network

+

v2(t)

–

i1(t)

Lr

CrD2

SW

Replace converter elements by their high-frequency equivalents:

• Independent voltage source Vg: short circuit

• Filter capacitors: short circuits

• Filter inductors: open circuits

The resonant switch network remains.

If the converter contains a ZCS
quasi-resonant switch, then the
result of these operations is
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Zero-current and zero-voltage switching

+

v2(t)

–

i1(t)

Lr

CrD2

SW
ZCS quasi-resonant switch:

• Tank inductor is in series with
switch; hence SW switches at
zero current

• Tank capacitor is in parallel with
diode D2; hence D2 switches at
zero voltage

Discussion

• Zero voltage switching of D2 eliminates switching loss arising from D2

stored charge.

• Zero current switching of SW: device Q1 and D1 output capacitances lead
to switching loss. In full-wave case, stored charge of diode D1 leads to
switching loss.

• Peak transistor current is (1 + Js) Vg/R0, or more than twice the PWM value.
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20.2.1  The zero-voltage-switching
quasi-resonant switch cell

Lr

Cr

D2

SW

When the previously-described operations
are followed, then the converter reduces to

Lr

Cr

D2
+
–

L

C R

+

V

–

Vg

I

+

v2(t)

–

i1(t) i2(t)

+

v1(t)

–

+    vCr(t)    –

iLr(t)
D1

Q1

A full-wave version based on the
PWM buck converter:
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ZVS quasi-resonant switch cell

θ = ω0t

vCr(t)

V1

iLr(t) I2

Subinterval: 1 2 3 4

Conducting
devices:

Q1

D2

Q1D1

D2

X

ω0Ts

α ξδβ

Tank waveforms

µ = 1 – FP1
2

1
Js

µ = 1 – FP1
1
Js

Js ≥ 1

peak transistor voltage Vcr,pk = (1 + Js) V1

Switch conversion ratio

half-wave

full-wave

ZVS boundary

A problem with the quasi-resonant ZVS
switch cell: peak transistor voltage
becomes very large when zero voltage
switching is required for a large range of
load currents.
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20.2.2  The ZVS multiresonant switch

When the previously-described operations
are followed, then the converter reduces to

A half-wave version based on the
PWM buck converter:

Lr

Cs

D2

SW

Cd

Lr

D2
+
–

L

C R

+

V

–

Vg

I

+

v2(t)

–

i1(t) i2(t)

+

v1(t)

–

Cd

Cs

D1

Q1
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20.2.3  Quasi-square-wave resonant switches

Lr Cr

D2

SW

Lr Cr D2
SW

When the previously-
described operations
are followed, then the
converter reduces to

ZCS

ZVS
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A quasi-square-wave ZCS buck with input filter

+
–

Lr

Cr

Vg

Cf

Lf D1

D2

Q1 L

C R

+

V

–

I

• The basic ZCS QSW switch cell is restricted to 0 ≤ µ ≤ 0.5

• Peak transistor current is equal to peak transistor current of PWM
cell

• Peak transistor voltage is increased

• Zero-current switching in all semiconductor devices
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A quasi-square-wave ZVS buck

• The basic ZVS QSW switch cell is restricted to 0.5 ≤ µ ≤ 1

• Peak transistor voltage is equal to peak transistor voltage of PWM
cell

• Peak transistor current is increased

• Zero-voltage switching in all semiconductor devices

+
– CrVg

D1

D2

Q1

+

v2(t)

–

i1(t) i2(t)

+

v1(t)

–

Lr

L

C R

+

V

–

I
V1

Lr

–
V2

Lr

ω0Ts

i2(t)

v2(t) V1

ω0t

0

Conducting
devices: D2X XQ1D1
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20.3  Ac modeling of quasi-resonant converters

Use averaged switch modeling technique: apply averaged PWM
model, with d replaced by µ

Buck example with full-wave ZCS quasi-resonant cell:
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–

vg(t)

i(t)

+

v2(t)

–

i1(t) i2(t)
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–

Lr

Cr

Full-wave ZCS quasi-resonant switch cell

+

v1r(t)

–

i2r(t)

D1

D2

Q1

Frequency
modulator

Gate
driver

vc(t)

µ = F
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Small-signal ac model

+

–

v2

+

–

+
–vg

+–

L

RC

1 : F

Cr

i2r

fs
I2

f0

fs
V1

f0v1r

fs
vc

Lr i1

Gm(s)

+

–

v

µ = F

v2(t) Ts
= µ v1r(t) Ts

i1(t) Ts
= µ i2r(t) Ts

i1(t) = fs(t)
I2

f0

v2(t) =
Fs

f0
v1r(t) + fs(t)

V1

f0

Averaged switch equations: Linearize:

Resulting ac model:
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Low-frequency model

Tank dynamics occur only at frequency near or greater than switching
frequency —discard tank elements
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–vg

+–

L

RC

1 : F
+

–

v2fs
I2

f0

fs
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fs
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v

—same as PWM buck, with d replaced by F
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Example 2: Half-wave ZCS quasi-resonant buck

+
–

L

C R

+

v(t)

–

vg(t)

i(t)

+

v2(t)

–

i1(t) i2(t)

+

v1(t)

–

Lr

Cr

Half-wave ZCS quasi-resonant switch cell
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Frequency
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Gate
driver
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Now, µ depends on js: µ(t) =
fs(t)
f0

P1
2

js(t) js(t) = R0

i2r(t) Ts

v1r(t) Ts
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Small-signal modeling

µ(t) = Kvv1r(t) + Ki i2r(t) + Kc fs(t)

Kv = –
∂µ
∂ js

R0I2

V 1
2

Ki = –
∂µ
∂ js

R0

V1

Kc =
µ0

Fs

∂µ
∂ js

=
Fs

2π f0
1
2

–
1 + 1 – J s

2

J s
2

with

i1(t) = µ(t) I2 + i2r(t) µ0

v2(t) = µ0 v1r(t) + µ(t) V1

Perturbation and linearization of µ(v1r, i2r, fs):

Linearized terminal equations of switch network:
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Equivalent circuit model
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Low frequency model: set tank elements to zero
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Predicted small-signal transfer functions
Half-wave ZCS buck

Gvg(s) = Gg0
1

1 + 1
Q

s
ω0

+ s
ω0

2

Gvc(s) = Gc0
1

1 + 1
Q

s
ω0

+ s
ω0

2

Gg0 =
µ0 + KvVg

1 +
KiVg

R

Gc0 =
KcVg

1 +
KiVg

R

ω0 =
1 +

KiVg

R
LrCr

Q =
1 +

KiVg

R
R0

R + KiVg
R
R0

R0 =
Lr

Cr

Full-wave: poles and zeroes are same
as PWM

Half-wave: effective feedback reduces
Q-factor and dc gains
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20.4 Summary of key points

1. In a resonant switch converter, the switch network of a PWM converter
is replaced by a switch network containing resonant elements. The
resulting hybrid converter combines the properties of the resonant
switch network and the parent PWM converter.

2. Analysis of a resonant switch cell involves determination of the switch
conversion ratio µ. The resonant switch waveforms are determined, and
are then averaged. The switch conversion ratio µ is a generalization of
the PWM CCM duty cycle d. The results of the averaged analysis of
PWM converters operating in CCM can be directly adapted to the
related resonant switch converter, simply by replacing d with µ.

3. In the zero-current-switching quasi-resonant switch, diode D2 operates
with zero-voltage switching, while transistor Q1 and diode D1 operate
with zero-current switching.
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Summary of key points

4. In the zero-voltage-switching quasi-resonant switch, the transistor Q1
and diode D1 operate with zero-voltage switching, while diode D2

operates with zero-current switching.

5. Full-wave versions of the quasi-resonant switches exhibit very simple
control characteristics: the conversion ratio µ is essentially independent
of load current. However, these converters exhibit reduced efficiency at
light load, due to the large circulating currents. In addition, significant
switching loss is incurred due to the recovered charge of diode D1.

6. Half-wave versions of the quasi-resonant switch exhibit conversion
ratios that are strongly dependent on the load current. These
converters typically operate with wide variations of switching frequency.

7. In the zero-voltage-switching multiresonant switch, all semiconductor
devices operate with zero-voltage switching. In consequence, very low
switching loss is observed.
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Summary of key points

8. In the quasi-square-wave zero-voltage-switching resonant switches, all
semiconductor devices operate with zero-voltage switching, and with
peak voltages equal to those of the parent PWM converter. The switch
conversion ratio is restricted to the range 0.5 ≤ µ ≤ 1.

9. The small-signal ac models of converters containing resonant switches
are similar to the small-signal models of their parent PWM converters.
The averaged switch modeling approach can be employed to show that
the quantity d(t) is simply replaced by µ(t).

10. In the case of full-wave quasi-resonant switches, µ depends only on the
switching frequency, and therefore the transfer function poles and
zeroes are identical to those of the parent PWM converter.

11. In the case of half-wave quasi-resonant switches, as well as other
types of resonant switches, the conversion ratio µ is a strong function of
the switch terminal quantities v1 and i2. This leads to effective feedback,
which modifies the poles, zeroes, and gains of the transfer functions.


