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Converter Transfer Functions
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Design-oriented analysis

How to approach a real (and hence, complicated) system

Problems:

Complicated derivations

Long equations

Algebra mistakes

Design objectives:

Obtain physical insight which leads engineer to synthesis of a good design

Obtain simple equations that can be inverted, so that element values can 
be chosen to obtain desired behavior. Equations that cannot be inverted 
are useless for design!

Design-oriented analysis is a structured approach to analysis, which attempts to 
avoid the above problems
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Some elements of design-oriented analysis, 
discussed in this chapter

• Writing transfer functions in normalized form, to directly expose salient 
features

• Obtaining simple analytical expressions for asymptotes, corner 
frequencies, and other salient features, allows element values to be 
selected such that a given desired behavior is obtained

• Use of inverted poles and zeroes, to refer transfer function gains to the 
most important asymptote

• Analytical approximation of roots of high-order polynomials

• Graphical construction of Bode plots of transfer functions and 
polynomials, to 

avoid algebra mistakes

approximate transfer functions
obtain insight into origins of salient features
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8.1.  Review of Bode plots

Decibels

G
dB

= 20 log10 G

Table 8.1. Expressing magnitudes in decibels

Actual magnitude Magnitude in dB

1/2 – 6dB

1 0 dB

2 6 dB

5 = 10/2 20 dB – 6 dB = 14 dB

10 20dB

1000 = 103 3 ⋅ 20dB = 60 dB

Z
dB

= 20 log10

Z
Rbase

Decibels of quantities having 
units (impedance example): 
normalize before taking log

5Ω is equivalent to 14dB with respect to a base impedance of Rbase = 
1Ω, also known as 14dBΩ.

60dBµA is a current 60dB greater than a base current of 1µA, or 1mA.
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Bode plot of fn

G =
f
f0

n

Bode plots are effectively log-log plots, which cause functions which 
vary as fn to become linear plots. Given:

Magnitude in dB is

G
dB

= 20 log10

f
f0

n

= 20n log10

f
f0

f
f0

– 2

f
f0

2

0dB

–20dB

–40dB

–60dB

20dB

40dB

60dB

f
log scale

f00.1f0 10f0

f
f0

f
f0

– 1

n = 1
n =

 2

n = –2

n = –120 dB/decade

40dB/decade

–20dB/decade

–40dB/decade

• Slope is 20n dB/decade

• Magnitude is 1, or 0dB, at 
frequency f = f0
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8.1.1.  Single pole response

+
–

R

Cv1(s)

+

v2(s)

–

Simple R-C example Transfer function is

G(s) =
v2(s)
v1(s)

=
1

sC
1

sC
+ R

G(s) = 1
1 + sRC

Express as rational fraction:

This coincides with the normalized 
form

G(s) = 1
1 + s

ω0

with ω0 = 1
RC
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G(jω)  and  || G(jω) ||

Im(G(jω))

Re(G(jω))

G(jω)

|| 
G

(jω
) |

|

∠G(jω)

G( jω) = 1
1 + j ω

ω0

=
1 – j ω

ω0

1 + ω
ω0

2

G( jω) = Re (G( jω))
2

+ Im (G( jω))
2

= 1

1 + ω
ω0

2

Let s = jω:

Magnitude is

Magnitude in dB:

G( jω)
dB

= – 20 log10 1 + ω
ω0

2
dB
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Asymptotic behavior: low frequency

G( jω) = 1

1 + ω
ω0

2

ω
ω0

<< 1

G( jω) ≈ 1
1

= 1

G( jω)
dB

≈ 0dB

f
f0

– 1

–20dB/decade

ff00.1f0 10f0

0dB

–20dB

–40dB

–60dB

0dB

|| G(jω) ||dB

For small frequency, 
ω << ω0 and f << f0 :

Then || G(jω) || 
becomes

Or, in dB,

This is the low-frequency 
asymptote of || G(jω) || 
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Asymptotic behavior: high frequency

G( jω) = 1

1 + ω
ω0

2

f
f0

– 1

–20dB/decade

ff00.1f0 10f0

0dB

–20dB

–40dB

–60dB

0dB

|| G(jω) ||dB

For high frequency, 
ω >> ω0 and f  >> f0 :

Then || G(jω) || 
becomes

The high-frequency asymptote of || G(jω) || varies as f-1. 
Hence, n = -1, and a straight-line asymptote having a 
slope of -20dB/decade is obtained. The asymptote has 
a value of 1 at f  = f0 .

ω
ω0

>> 1

1 + ω
ω0

2
≈ ω

ω0

2

G( jω) ≈ 1
ω
ω0

2
=

f
f0

– 1
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Deviation of exact curve near f = f0

Evaluate exact magnitude:

at f = f0:

G( jω0) = 1

1 +
ω0

ω0

2
= 1

2

G( jω0) dB
= – 20 log10 1 +

ω0

ω0

2

≈ – 3 dB

at f = 0.5f0 and 2f0 :

Similar arguments show that the exact curve lies 1dB below 
the asymptotes.
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Summary: magnitude

–20dB/decade

f

f0

0dB

–10dB

–20dB

–30dB

|| G(jω) ||dB

3dB1dB

0.5f0 1dB

2f0
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Phase of G(jω)

G( jω) = 1
1 + j ω

ω0

=
1 – j ω

ω0

1 + ω
ω0

2

∠G( jω) = tan– 1
Im G( jω)

Re G( jω)

Im(G(jω))

Re(G(jω))

G(jω)
|| 

G
(jω

) |
|

∠G(jω)
∠G( jω) = – tan– 1 ω

ω0
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-90˚

-75˚

-60˚

-45˚

-30˚

-15˚

0˚

f

0.01f0 0.1f0 f0 10f0 100f0

∠G(jω)

f0

-45˚

0˚ asymptote

–90˚ asymptote

Phase of G(jω)

∠G( jω) = – tan– 1 ω
ω0

ω ∠ G(jω)

0 0˚

ω0
–45˚

∞ –90˚
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Phase asymptotes

Low frequency: 0˚

High frequency: –90˚

Low- and high-frequency asymptotes do not intersect

Hence, need a midfrequency asymptote

Try a midfrequency asymptote having slope identical to actual slope at 
the corner frequency f0. One can show that the asymptotes then 
intersect at the break frequencies

fa = f0 e– π / 2 ≈ f0 / 4.81
fb = f0 eπ / 2 ≈ 4.81 f0
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Phase asymptotes

fa = f0 e– π / 2 ≈ f0 / 4.81
fb = f0 eπ / 2 ≈ 4.81 f0

-90˚

-75˚

-60˚

-45˚

-30˚

-15˚

0˚

f

0.01f0 0.1f0 f0 100f0

∠G(jω)

f0

-45˚

fa = f0 / 4.81

fb = 4.81 f0
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Phase asymptotes: a simpler choice

-90˚

-75˚

-60˚

-45˚

-30˚

-15˚

0˚

f

0.01f0 0.1f0 f0 100f0

∠G(jω)

f0

-45˚

fa = f0 / 10

fb = 10 f0

fa = f0 / 10
fb = 10 f0
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Summary: Bode plot of real pole

0˚
∠G(jω)

f0

-45˚

f0 / 10

10 f0

-90˚

5.7˚

5.7˚

-45˚/decade

–20dB/decade

f0

|| G(jω) ||dB 3dB1dB

0.5f0 1dB

2f0

0dB
G(s) = 1

1 + s
ω0
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8.1.2.  Single zero response

G(s) = 1 + s
ω0

Normalized form:

G( jω) = 1 + ω
ω0

2

∠G( jω) = tan– 1 ω
ω0

Magnitude:

Use arguments similar to those used for the simple pole, to derive 
asymptotes:

0dB at low frequency, ω <<  ω0 

+20dB/decade slope at high frequency, ω >> ω0 

Phase:

—with the exception of a missing minus sign, same as simple pole
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Summary: Bode plot, real zero

0˚∠G(jω)

f0
45˚

f0 / 10

10 f0 +90˚
5.7˚

5.7˚

+45˚/decade

+20dB/decade

f0

|| G(jω) ||dB
3dB1dB

0.5f0 1dB

2f0

0dB

G(s) = 1 + s
ω0
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8.1.3.  Right half-plane zero

Normalized form:

G( jω) = 1 + ω
ω0

2

Magnitude:

—same as conventional (left half-plane) zero. Hence, magnitude 
asymptotes are identical to those of LHP zero.

Phase:

—same as real pole.

The RHP zero exhibits the magnitude asymptotes of the LHP zero, 
and the phase asymptotes of the pole

G(s) = 1 – s
ω0

∠G( jω) = – tan– 1 ω
ω0
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+20dB/decade

f0

|| G(jω) ||dB
3dB1dB

0.5f0 1dB

2f0

0dB

0˚
∠G(jω)

f0

-45˚

f0 / 10

10 f0

-90˚

5.7˚

5.7˚

-45˚/decade

Summary: Bode plot, RHP zero

G(s) = 1 – s
ω0
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8.1.4.  Frequency inversion

Reversal of frequency axis. A useful form when describing mid- or 
high-frequency flat asymptotes. Normalized form, inverted pole:

An algebraically equivalent form:

The inverted-pole format emphasizes the high-frequency gain.

G(s) = 1

1 +
ω0
s

G(s) =

s
ω0

1 + s
ω0
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Asymptotes, inverted pole

0˚

∠G(jω)

f0

+45˚

f0 / 10

10 f0

+90˚
5.7˚

5.7˚

-45˚/decade

0dB

+20dB/decade

f0

|| G(jω) ||dB

3dB

1dB

0.5f0

1dB
2f0

G(s) = 1

1 +
ω0
s
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Inverted zero

Normalized form, inverted zero:

An algebraically equivalent form:

Again, the inverted-zero format emphasizes the high-frequency gain.

G(s) = 1 +
ω0
s

G(s) =
1 + s

ω0

s
ω0
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Asymptotes, inverted zero

0˚

∠G(jω)

f0

–45˚

f0 / 10

10 f0

–90˚

5.7˚

5.7˚

+45˚/decade

–20dB/decade

f0

|| G(jω) ||dB

3dB

1dB

0.5f0

1dB

2f0

0dB

G(s) = 1 +
ω0
s
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8.1.5.  Combinations

Suppose that we have constructed the Bode diagrams of two 
complex-values functions of frequency, G1(ω) and G2(ω). It is desired 
to construct the Bode diagram of the product, G3(ω) = G1(ω) G2(ω).

Express the complex-valued functions in polar form:

G1(ω) = R1(ω) e jθ1(ω)

G2(ω) = R2(ω) e jθ2(ω)

G3(ω) = R3(ω) e jθ3(ω)

The product G3(ω) can then be written

G3(ω) = G1(ω) G2(ω) = R1(ω) e jθ1(ω) R2(ω) e jθ2(ω)

G3(ω) = R1(ω) R2(ω) e j(θ1(ω) + θ2(ω))
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Combinations

G3(ω) = R1(ω) R2(ω) e j(θ1(ω) + θ2(ω))

The composite phase is

θ3(ω) = θ1(ω) + θ2(ω)

The composite magnitude is

R3(ω) = R1(ω) R2(ω)

R3(ω)
dB

= R1(ω)
dB

+ R2(ω)
dB

Composite phase is sum of individual phases.

Composite magnitude, when expressed in dB, is sum of individual 
magnitudes.
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Example 1: G(s) =
G0

1 + s
ω1

1 + s
ω2

–40 dB/decade

f

|| G ||

∠ G

∠ G|| G ||

0˚

–45˚

–90˚

–135˚

–180˚

–60 dB

0 dB

–20 dB

–40 dB

20 dB

40 dB

f1
100 Hz

f2
2 kHz

G0 = 40 ⇒ 32 dB
–20 dB/decade

0 dB

f1/10
10 Hz

f2/10
200 Hz

10f1
1 kHz

10f2
20 kHz

0˚

–45˚/decade

–90˚/decade

–45˚/decade

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz

with G0 = 40 ⇒  32 dB, f1 = ω1/2π = 100 Hz, f2 = ω2/2π = 2 kHz
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Example 2

|| A ||

∠ A

f1

f2

|| A0 ||dB +20 dB/dec

f1 /10

10f1 f2 /10

10f2

–45˚/dec+45˚/dec

0˚

|| A∞ ||dB

0˚

–90˚

Determine the transfer function A(s) corresponding to the following 
asymptotes:
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Example 2, continued

One solution:

A(s) = A0

1 + s
ω1

1 + s
ω2

Analytical expressions for asymptotes:

For f < f1

A0

1 + s
ω1
➚

1 + s
ω2
➚

s = jω

= A0
1
1

= A0

For f1 <  f < f2

A0

1➚ + s
ω1

1 + s
ω2
➚

s = jω

= A0

s
ω1 s = jω

1
= A0

ω
ω1

= A0
f
f1
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Example 2, continued

For f > f2

A0

1➚ + s
ω1

1➚ + s
ω2

s = jω

= A0

s
ω1 s = jω

s
ω2 s = jω

= A0

ω2
ω1

= A0

f2
f1

So the high-frequency asymptote is

A∞ = A0

f2
f1

Another way to express A(s): use inverted poles and zeroes, and 
express A(s) directly in terms of A∞

A(s) = A∞

1 +
ω1
s

1 +
ω2
s
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8.1.6  Quadratic pole response: resonance

+
–

L

C Rv1(s)

+

v2(s)

–

Two-pole low-pass filter example

Example

G(s) =
v2(s)
v1(s)

= 1
1 + s L

R + s2LC

Second-order denominator, of 
the form

G(s) = 1
1 + a1s + a2s2

with a1 = L/R and a2 = LC

How should we construct the Bode diagram?
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Approach 1: factor denominator

G(s) = 1
1 + a1s + a2s2

We might factor the denominator using the quadratic formula, then 
construct Bode diagram as the combination of two real poles:

G(s) = 1
1 – s

s1
1 – s

s2

with s1 = –
a1

2a2
1 – 1 –

4a2

a1
2

s2 = –
a1

2a2
1 + 1 –

4a2

a1
2

• If 4a2 ≤ a1
2, then the roots s1 and s2 are real. We can construct Bode 

diagram as the combination of two real poles.
• If 4a2 > a1

2, then the roots are complex. In Section 8.1.1, the 
assumption was made that ω0 is real; hence, the results of that 
section cannot be applied and we need to do some additional work.
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Approach 2: Define a standard normalized form 
for the quadratic case

G(s) = 1
1 + 2ζ s

ω0
+ s

ω0

2 G(s) = 1
1 + s

Qω0
+ s

ω0

2or

• When the coefficients of s are real and positive, then the parameters ζ, 
ω0, and Q are also real and positive

• The parameters ζ, ω0, and Q are found by equating the coefficients of s

• The parameter ω0 is the angular corner frequency, and we can define f0 
= ω0/2π

• The parameter ζ is called the damping factor. ζ controls the shape of the 
exact curve in the vicinity of f = f0. The roots are complex when ζ < 1.

• In the alternative form, the parameter Q is called the quality factor. Q 
also controls the shape of the exact curve in the vicinity of f = f0. The 
roots are complex when Q > 0.5.
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The Q-factor

Q = 1
2ζ

In a second-order system, ζ and Q are related according to

Q is a measure of the dissipation in the system. A more general 
definition of Q, for sinusoidal excitation of a passive element or system 
is

Q = 2π (peak stored energy)
(energy dissipated per cycle)

For a second-order passive system, the two equations above are 
equivalent. We will see that Q has a simple interpretation in the Bode 
diagrams of second-order transfer functions.
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Analytical expressions for f0 and Q

G(s) =
v2(s)
v1(s)

= 1
1 + s L

R + s2LC

Two-pole low-pass filter 
example: we found that

G(s) = 1
1 + s

Qω0
+ s

ω0

2

Equate coefficients of like 
powers of s with the 
standard form

Result:
f0 =

ω0

2π = 1
2π LC

Q = R C
L
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Magnitude asymptotes, quadratic form

G( jω) = 1

1 – ω
ω0

2 2

+ 1
Q2

ω
ω0

2

G(s) = 1
1 + s

Qω0
+ s

ω0

2
In the form

let s = jω and find magnitude:

Asymptotes are

G → 1 for ω << ω0

G → f
f0

– 2

for ω >> ω0

f
f0

– 2

–40 dB/decade

ff00.1f0 10f0

0 dB

|| G(jω) ||dB

0 dB

–20 dB

–40 dB

–60 dB
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Deviation of exact curve from magnitude asymptotes

G( jω) = 1

1 – ω
ω0

2 2

+ 1
Q2

ω
ω0

2

At ω = ω0, the exact magnitude is

G( jω0) = Q G( jω0) dB
= Q

dBor, in dB:

The exact curve has magnitude 
Q at f = f0. The deviation of the 
exact curve from the 
asymptotes is | Q |dB

|| G ||

f0

| Q |dB0 dB

–40 dB/decade
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Two-pole response: exact curves

Q = ∞

Q = 5

Q = 2

Q = 1

Q = 0.7

Q = 0.5

Q = 0.2

Q = 0.1

-20dB

-10dB

0dB

10dB

10.3 0.5 2 30.7

f / f0

|| G ||dB

Q = 0.1

Q = 0.5

Q = 0.7

Q = 1

Q = 2

Q =5

Q = 10

Q = ∞

-180°

-135°

-90°

-45°

0°

0.1 1 10

f / f0

∠G

Q = 0.2
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8.1.7.  The low-Q approximation

G(s) = 1
1 + a1s + a2s2 G(s) = 1

1 + s
Qω0

+ s
ω0

2

Given a second-order denominator polynomial, of the form

or

When the roots are real, i.e., when Q < 0.5, then we can factor the 
denominator, and construct the Bode diagram using the asymptotes 
for real poles. We would then use the following normalized form:

G(s) = 1
1 + s

ω1
1 + s

ω2

This is a particularly desirable approach when Q << 0.5, i.e., when the 
corner frequencies ω1 and ω2  are well separated.
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An example

A problem with this procedure is the complexity of the quadratic 
formula used to find the corner frequencies.

R-L-C network example:

+
–

L

C Rv1(s)

+

v2(s)

–

G(s) =
v2(s)
v1(s)

= 1
1 + s L

R + s2LC

Use quadratic formula to factor denominator. Corner frequencies are:

ω1, ω2 =
L / R ± L / R

2
– 4 LC

2 LC
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Factoring the denominator

ω1, ω2 =
L / R ± L / R

2
– 4 LC

2 LC

This complicated expression yields little insight into how the corner 
frequencies ω1 and ω2 depend on R, L, and C.

When the corner frequencies are well separated in value, it can be 
shown that they are given by the much simpler (approximate) 
expressions

ω1 ≈ R
L , ω2 ≈ 1

RC

ω1 is then independent of C, and ω2  is independent of L.

These simpler expressions can be derived via the Low-Q Approximation. 
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Derivation of the Low-Q Approximation

G(s) = 1
1 + s

Qω0
+ s

ω0

2

Given

Use quadratic formula to express corner frequencies ω1 and ω2 in 
terms of Q and ω0 as:

ω1 =
ω0

Q
1 – 1 – 4Q2

2
ω2 =

ω0

Q
1 + 1 – 4Q2

2
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Corner frequency ω2

ω2 =
ω0

Q
1 + 1 – 4Q2

2

ω2 =
ω0

Q
F(Q)

F(Q) = 1
2

1 + 1 – 4Q2

ω2 ≈ ω0

Q
for Q << 1

2

F(Q)

0 0.1 0.2 0.3 0.4 0.5

Q

0

0.25

0.5

0.75

1

can be written in the form

where

For small Q, F(Q) tends to 1. 
We then obtain

For Q < 0.3, the approximation F(Q) = 1 is 
within 10% of the exact value.
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Corner frequency ω1

F(Q) = 1
2

1 + 1 – 4Q2

F(Q)

0 0.1 0.2 0.3 0.4 0.5

Q

0

0.25

0.5

0.75

1

can be written in the form

where

For small Q, F(Q) tends to 1. 
We then obtain

For Q < 0.3, the approximation F(Q) = 1 is 
within 10% of the exact value.

ω1 =
ω0

Q
1 – 1 – 4Q2

2

ω1 =
Q ω0

F(Q)

ω1 ≈ Q ω0 for Q << 1
2
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The Low-Q Approximation

f2 =
f0F(Q)

Q

≈ f0
Q

–40dB/decade

f00dB

|| G ||dB

–20dB/decade

f1 =
Q f0

F(Q)
≈ Q f0
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R-L-C Example

ω1 ≈ Q ω0 = R C
L

1
LC

= R
L

ω2 ≈ ω0

Q
= 1

LC
1

R C
L

= 1
RC

G(s) =
v2(s)
v1(s)

= 1
1 + s L

R + s2LC
f0 =

ω0

2π = 1
2π LC

Q = R C
L

For the previous example:

Use of the Low-Q Approximation leads to
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8.2.  Analysis of converter transfer functions

8.2.1.  Example: transfer functions of the buck-boost converter
8.2.2.  Transfer functions of some basic CCM converters
8.2.3.  Physical origins of the right half-plane zero in converters
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8.2.1.  Example: transfer functions of the
buck-boost converter

Small-signal ac equations of the buck-boost converter, derived in 
section 7.2:

L
d i(t)

dt
= Dvg(t) + D'v(t) + Vg – V d(t)

C
dv(t)

dt
= – D'i(t) –

v(t)
R + Id(t)

ig(t) = Di(t) + Id(t)
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Definition of transfer functions

The converter contains two inputs,              and                 and one 
output, 

Hence, the ac output voltage variations can be expressed as the 
superposition of terms arising from the two inputs:

v(s) = Gvd(s) d(s) + Gvg(s) vg(s)

d(s) vg(s)
v(s)

The control-to-output and line-to-output transfer functions can be 
defined as

Gvd(s) =
v(s)
d(s)

vg(s) = 0

and Gvg(s) =
v(s)
vg(s)

d(s) = 0
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Derivation of transfer functions

Algebraic approach

Take Laplace transform of converter equations, letting initial 
conditions be zero:

sLi(s) = Dvg(s) + D'v(s) + Vg – V d(s)

sCv(s) = – D'i(s) –
v(s)
R + Id(s)

Eliminate         , and solve fori(s) v(s)

i(s) =
Dvg(s) + D'v(s) + Vg – V d(s)

sL



Fundamentals of Power Electronics Chapter 8: Converter Transfer Functions53

Derivation of transfer functions

sCv(s) = – D'
sL Dvg(s) + D'v(s) + Vg – V d(s) –

v(s)
R + Id(s)

v(s) = – DD'
D'2 + s L

R + s2 LC
vg(s) –

Vg – V – s LI

D'2 + s L
R + s2 LC

d(s)

write in normalized form:

v(s) = – D
D'

1
1 + s L

D'2 R
+ s2 LC

D'2

vg(s) –
Vg – V

D'2

1 – s LI
Vg – V

1 + s L
D'2 R

+ s2 LC
D'2

d(s)



Fundamentals of Power Electronics Chapter 8: Converter Transfer Functions54

Derivation of transfer functions

Hence, the line-to-output transfer function is

Gvg(s) =
v(s)
vg(s)

d(s) = 0

= – D
D'

1
1 + s L

D'2 R
+ s2 LC

D'2

which is of the following standard form:

Gvg(s) = Gg0
1

1 + s
Qω0

+ s
ω0

2
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Salient features of the line-to-output transfer function

Gg0 = – D
D'

Equate standard form to derived transfer function, to determine 
expressions for the salient features:

1
ω0

2 = LC
D'2 ω0 = D'

LC

1
Qω0

= L
D'2R Q = D'R C

L
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Control-to-output transfer function

Gvd(s) =
v(s)
d(s)

vg(s) = 0

= –
Vg – V

D'2

1 – s LI
Vg – V

1 + s L
D'2 R

+ s2 LC
D'2

Standard form:

Gvd(s) = Gd0

1 – s
ωz

1 + s
Qω0

+ s
ω0

2
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Salient features of control-to-output transfer function

Gd0 = –
Vg – V

D'2 = –
Vg

D'3 = V
D D'2

ωz =
Vg – V

L I = D' R
D L (RHP)

ω0 = D'
LC

Q = D'R C
L

V = – D
D'

Vg

I = – V
D' R

— Simplified using the dc relations:
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Plug in numerical values

Suppose we are given the 
following numerical values:

D = 0.6
R = 10Ω
Vg = 30V
L = 160µH
C = 160µF

Then the salient features 
have the following numerical 
values:

Gg0 = D
D'

= 1.5 ⇒ 3.5dB

Gd0 =
V

D D'2 = 469V ⇒ 53.4dBV

f0 =
ω0

2π = D'
2π LC

= 400Hz

Q = D'R C
L = 4 ⇒ 12dB

fz =
ωz

2π = D'R
2πDL

= 6.6kHz
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Bode plot: control-to-output transfer function

f

0˚

–90˚

–180˚

–270˚

|| Gvd ||

Gd0  = 469V
        ⇒ 53.4dBV

|| Gvd || ∠ Gvd

1MHz10Hz 100Hz 1kHz 10kHz 100kHz

0dBV

–20dBV

–40dBV

20dBV

40dBV

60dBV

80dBV

f0

Q = 4 ⇒ 12dB

400Hz

fz
6.6kHz
RHP

∠ Gvd

10–1 / 2Q0 f0

101 / 2Q0 f0

0˚ 300Hz

533Hz

–20dB/dec

–40dB/dec

–270˚

fz /10
660Hz

10fz
66kHz
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Bode plot: line-to-output transfer function

f

|| Gvg ||

|| Gvg ||

10Hz 100Hz 1kHz 10kHz 100kHz

∠ Gvg

10–1 / 2Q0 f0

101 / 2Q0 f0

0˚ 300Hz

533Hz

–180˚

–60dB

–80dB

–40dB

–20dB

0dB

20dB
Gg0  = 1.5
        ⇒ 3.5dB

f0

Q = 4 ⇒ 12dB

400Hz –40dB/dec

0˚

–90˚

–180˚

–270˚

∠ Gvg
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8.2.2.  Transfer functions of
some basic CCM converters

Table 8.2. Salient features of the small-signal CCM transfer functions of some basic dc-dc converters

Converter Gg0 Gd0 ω0 Q ωz

buck D  V
D

  1
LC

  R C
L ∞

boost   1
D'

  V
D'

  D'
LC

  D'R C
L

  D'2R
L

buck-boost   – D
D'

  V
D D'2

  D'
LC

  D'R C
L

  D'2 R
D L

where the transfer functions are written in the standard forms

Gvd(s) = Gd0

1 – s
ωz

1 + s
Qω0

+ s
ω0

2

Gvg(s) = Gg0
1

1 + s
Qω0

+ s
ω0

2
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8.2.3.  Physical origins of the right half-plane zero

+
–

1

s
ωz

uout(s)uin(s)

G(s) = 1 – s
ω0

• phase reversal at 
high frequency

• transient response: 
output initially tends 
in wrong direction
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Two converters whose CCM control-to-output 
transfer functions exhibit RHP zeroes

+
–

L

C R

+

v

–

1

2

vg

iL(t)

iD(t)

+
– L

C R

+

v

–

1 2

vg

iL(t)

iD(t)

Boost

Buck-boost

iD Ts
= d' iL Ts



Fundamentals of Power Electronics Chapter 8: Converter Transfer Functions64

Waveforms, step increase in duty cycle

t

iD(t)

<i D(t)>Ts

t

| v(t) |

t

iL(t)

d = 0.6d = 0.4

iD Ts
= d' iL Ts

• Increasing d(t) 
causes the average 
diode current to 
initially decrease

• As inductor current 
increases to its new 
equilibrium value, 
average diode 
current eventually 
increases
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Impedance graph paper

10Ω

1Ω

100mΩ

100Ω

1kΩ

10kΩ

10mΩ

1mΩ

100µH

1mH

10µH 100nH
10nH

1nH

10Hz 100Hz 1kHz 10kHz 100kHz 1MHz

1µH

10mH

100mH

1H

10H

10µF

100µF1mF
10mF

100mF
1F

1µF

100nF

10nF

1nF

100pF

20dBΩ

0dBΩ

–20dBΩ

40dBΩ

60dBΩ

80dBΩ

–40dBΩ

–60dBΩ
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Transfer functions predicted by canonical model

+
–

+– 1 : M(D)

Le

C Rvg(s)

e(s) d(s)

j(s) d(s)

+

–

v(s)

+

–

ve(s)

He(s)

Zout

Z2Z1
{ {

Zin
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Output impedance Zout: set sources to zero

Le C R
Zout

Z2Z1

{ {
Zout = Z1 || Z2
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Graphical construction of output impedance

1
ωC

R

|| Zout ||

f0

R0

|| Z1 || = ωLe

Q = R / R0
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Graphical construction of
filter effective transfer function

f0

Q = R / R0
ωLe

ωLe
= 1

1 /ωC

ωLe

= 1
ω2LeC

H e =
Zout

Z1
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Boost and buck-boost converters: Le = L / D’ 2

1
ωC

R

|| Zout ||

f0

R0

Q = R / R0

ωL

D'2
increasing

D



Fundamentals of Power Electronics Chapter 8: Converter Transfer Functions71

8.4.  Measurement of ac transfer functions
and impedances

Network Analyzer

Injection source Measured inputs

vy

magnitude
vz

frequency
vz

output
vz

+ –

input

vx

input
+ – + –

vy

vx

vy

vx

Data

17.3 dB

– 134.7˚

Data bus
to computer
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Swept sinusoidal measurements

• Injection source produces sinusoid      of controllable amplitude and 
frequency

• Signal inputs      and      perform function of narrowband tracking 
voltmeter:

Component of input at injection source frequency is measured

Narrowband function is essential: switching harmonics and other 
noise components are removed

• Network analyzer measures

vz

vx vy

∠vy

vx

vy

vx

and



Fundamentals of Power Electronics Chapter 8: Converter Transfer Functions73

Measurement of an ac transfer function

Network Analyzer

Injection source Measured inputs

vy

magnitude
vz

frequency
vz

output
vz

+ –

input

vx

input
+ – + –

vy

vx

vy

vx

Data

–4.7 dB

– 162.8˚

Data bus
to computer

Device
under test

G(s)

in
pu

t output

VCC

DC
bias

adjust

DC
blocking

capacitor

• Potentiometer 
establishes correct 
quiescent operating 
point

• Injection sinusoid 
coupled to device 
input via dc blocking 
capacitor

• Actual device input 
and output voltages 
are measured as
and

• Dynamics of blocking 
capacitor are irrelevant

vx

vy

vy(s)

vx(s)
= G(s)
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Measurement of an output impedance

Z(s) =
v(s)
i(s)

VCC

DC
bias

adjust

Device
under test

G(s)

in
pu

t output

Zout +
– vz

iout

vy

+ –

voltage
probe

Zs{
Rsource

DC blocking
capacitor

current
probe

vx

+ –

Zout(s) =
vy(s)

iout(s) amplifier
ac input = 0
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Measurement of output impedance

• Treat output impedance as transfer function from output current to 
output voltage:

• Potentiometer at device input port establishes correct quiescent 
operating point

• Current probe produces voltage proportional to current; this voltage 
is connected to network analyzer channel 

• Network analyzer result must be multiplied by appropriate factor, to 
account for scale factors of current and voltage probes

vx

Z(s) =
v(s)
i(s)

Zout(s) =
vy(s)

iout(s) amplifier
ac input = 0
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Measurement of small impedances

Impedance
under test

Z(s) +
– vz

iout

vy

+

–

voltage
probe

Rsource

vx
+

–

Network Analyzer

Injection source

Measured
inputs

voltage
probe
return
connection

injection
source
return
connection

iout

Zrz{
{ Zprobe

k iout

(1 – k) iout

+ –
(1 – k) iout Z probe

Grounding problems 
cause measurement 
to fail:

Injection current can 
return to analyzer via 
two paths. Injection 
current which returns
via voltage probe ground 
induces voltage drop in 
voltage probe, corrupting the 
measurement. Network 
analyzer measures

Z + (1 – k) Z probe = Z + Z probe || Zrz

For an accurate measurement, require

Z >> Z probe || Zrz
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Improved measurement: add isolation transformer

Impedance
under test

Z(s) +
– vz

iout

vy

+

–

voltage
probe

Rsource

vx
+

–

Network Analyzer

Injection source

Measured
inputs

voltage
probe
return
connection

injection
source
return
connection

Zrz{
{ Zprobe

+ –0V

0

iout

1 : n

Injection 
current must 
now return 
entirely 
through 
transformer. 
No additional 
voltage is 
induced in 
voltage probe 
ground 
connection
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8.5.  Summary of key points

1.  The magnitude Bode diagrams of functions which vary as (f / f0)n 
have slopes equal to 20n dB per decade, and pass through 0dB at
 f = f0.

2.  It is good practice to express transfer functions in normalized pole-
zero form; this form directly exposes expressions for the salient 
features of the response, i.e., the corner frequencies, reference 
gain, etc.

3.  The right half-plane zero exhibits the magnitude response of the 
left half-plane zero, but the phase response of the pole.

4.  Poles and zeroes can be expressed in frequency-inverted form, 
when it is desirable to refer the gain to a high-frequency asymptote.
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Summary of key points

5.  A two-pole response can be written in the standard normalized 
form of Eq. (8-53). When Q > 0.5, the poles are complex 
conjugates. The magnitude response then exhibits peaking in the 
vicinity of the corner frequency, with an exact value of Q at f = f0. 
High Q also causes the phase to change sharply near the corner 
frequency.

6.  When the Q is less than 0.5, the two pole response can be plotted 
as two real poles. The low- Q approximation predicts that the two 
poles occur at frequencies f0 / Q and Qf0. These frequencies are 
within 10% of the exact values for Q ≤ 0.3.

7.  The low- Q approximation can be extended to find approximate 
roots of an arbitrary degree polynomial. Approximate analytical 
expressions for the salient features can be derived. Numerical 
values are used to justify the approximations.
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Summary of key points

8.  Salient features of the transfer functions of the buck, boost, and buck-
boost converters are tabulated in section 8.2.2. The line-to-output 
transfer functions of these converters contain two poles. Their control-
to-output transfer functions contain two poles, and may additionally 
contain a right half-pland zero.

9.  Approximate magnitude asymptotes of impedances and transfer 
functions can be easily derived by graphical construction. This 
approach is a useful supplement to conventional analysis, because it 
yields physical insight into the circuit behavior, and because it 
exposes suitable approximations. Several examples, including the 
impedances of basic series and parallel resonant circuits and the 
transfer function He(s) of the boost and buck-boost converters, are 
worked in section 8.3.

10.  Measurement of transfer functions and impedances using a network 
analyzer is discussed in section 8.4. Careful attention to ground 
connections is important when measuring small impedances.


